masterThesis
Quantum weightless neuron dynamics
Registro en:
Autor
PAULA NETO, Fernando Maciano de
Institución
Resumen
A wide spectrum of social, biological, physical, chemical and computational systems have been investigated by the tools and techniques from the field of Dynamical Systems Theory to formalize the behaviour in time and quantify and qualify the parametric variations of those systems. In Biology in particular, studies have shown that learning neuron maximization can occur in specific dynamics conditions where information processing is optimized. This it may be expected that some of those conditions can be recognized and used in artificial models. This work studies the quantum artificial neuron weightless qRAM behavior, from the design iteration models - taking into account the physical and mathematical conditions of quantum computing that restricts the extraction of information at every time step - to its parametric analysis where converging behaviors, damped or oscillatory, are detailed. Tools of dynamical systems like orbits diagram and time series qualitatively illustrate its temporal variability. The main contribution of this work is to detail the neuron qRAM behavior so that the results can be used within the machine learning area, coupled with larger systems to achieve maximum learning tasks. As result, we propose a novel dynamical neuron model, named Quadratic Extraction Model (QEM), we perfom parametric studies of the existing models where underdamped, overdamped and undamped behaviour are encountered, and we present apresentation of a neuron configuration inside a quantum architecture with chaos behaviour. A quantitative measure model to compare dynamics orbits was also proposed. CNPQ Os mais variados sistemas sociais, biológicos, físicos, químicos e computacionais tem sido investigados pela área de Sistemas Dinâmicos para formalizar o comportamento no tempo e quantificar e qualificar variações paramétricas desses sistemas. Na biologia em particular, estudos tem mostrado que a maximização de aprendizado de um neurônio pode acontecer dentro de certas condições da sua dinâmica onde o processamento de informação é otimizado. Espera-se então que essas condições possam ser reconhecidas e utilizadas em modelos artificiais. Este trabalho descreve o comportamento do neurônio artificial quântico sem peso qRAM, desde a concepção de modelos de iteração - visto as condições físico matemáticas da computação quântica que restringe a extração da informação isolada do valor de saída do neurônio a cada etapa de tempo - até sua análise paramétrica de onde comportamentos convergentes, amortecidos ou oscilatórios são detalhados. Ferramentas dos sistemas dinâmicos como diagrama de órbitas e séries temporais ilustram qualitativamente sua variabilidade temporal. A principal contribuição desse trabalho é detalhar o comportamento do neurônio qRAM a fim de que os resultados possam ser usados dentro da área de aprendizagem de máquina, acoplado com sistemas maiores e complexos, com maximização de tarefas de aprendizado. Como resultado, há proposição de mais um modelo de dinâmica neuronal, o QEM, o estudo paramétrico dos modelos de dinâmicas existentes, que se identifica comportamentos subamortecidos, sobreamortecidos e não-amortecidos na dinâmica, assim como a apresentação de uma configuração neuronal dentro da arquitetura quântica que apresenta comportamento caótico. Um modelo de medição quantitivo para comparar dinâmicos foi também proposto.