doctoralThesis
Assessment to support the planning of sustainable data centers with high availability
Registro en:
CALLOU, Gustavo Rau de Almeida. Assessment to support the planning of sustainable data centers with high availability. Recife, 2013. 142 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
Autor
CALLOU, Gustavo Rau de Almeida
Institución
Resumen
The advent of services such as cloud computing, social networks and e-commerce has led
to an increased demand for computer resources from data centers. Prominent issues for
data center designers are sustainability, cost, and dependability, which are significantly
affected by the redundant architectures required to support these services. Within this
context, models are important tools for designers when attempting to quantify these
issues before implementing the final architecture.
This thesis proposes a set of models for the integrated quantification of the sustainability
impact, cost, and dependability of data center power and cooling infrastructures.
This is achieved with the support of an evaluation environment which is composed of
ASTRO, Mercury and Optimization tools. The approach taken to perform the system
dependability evaluation employs a hybrid modeling strategy which recognizes the advantages
of both stochastic Petri nets and reliability block diagrams. Besides that, a model
is proposed to verify that the energy flow does not exceed the maximum power capacity
that each component can provide (considering electrical devices) or extract (assuming
cooling equipment). Additionally, an optimization method is proposed for improving the
results obtained by Reliability Block Diagrams, Stochastic Petri nets and Energy Flow
models through the automatic selection of the appropriate devices from a list of candidate
components. This list corresponds to a set of alternative components that may compose
the data center architecture.
Several case studies are presented that analyze the environmental impact and dependability
metrics as well as the operational energy cost of real-world data center power and
cooling architectures. O surgimento de servi¸cos como computa¸c˜ao nas nuvens, redes sociais e com´ercio eletrˆonico
tem aumentado a demanda por recursos computacionais dos data centers. Preocupa¸c˜oes
decorrentes para os projetistas de data center s˜ao sustentabilidade, custo, e dependabilidade,
os quais s˜ao significativamente afetados pelas arquiteturas redundantes requeridas
para suportar tais servi¸cos. Nesse contexto, modelos s˜ao ferramentas importantes para
projetistas quanto a tentativa de quantificar esses problemas antes mesmo de implementar
a arquitetura final.
Nessa tese, um conjunto de modelos ´e proposto para a quantifica¸c˜ao integrada do impacto
na sustentabilidade, custo e dependabilidade das infraestruturas de refrigeramento
e potˆencia de data centers. Isso ´e obtido com o suporte do ambiente de avalia¸c˜ao que ´e
composto pelas ferramentas ASTRO, Mercury e o m´odulo de otimiza¸c˜ao. A avalia¸c˜ao de
dependabilidade faz uso de uma estrat´egia de modelagem h´ıbrida que usa as vantagens
tanto das redes de Petri estoc´asticas como dos diagramas de blocos de confiabilidade.
Al´em disso, um modelo ´e proposto para realizar a verifica¸c˜ao se fluxo de energia n˜ao excede
a capacidade m´axima de potˆencia que cada equipamento pode prover (considerando
dispositivos el´etricos) ou extrair (assumindo equipamentos de refrigera¸c˜ao). Adicionalmente,
um m´etodo de otimiza¸c˜ao ´e proposto para melhorar os resultados obtidos atrav´es
dos diagramas de blocos de confiabilidade, das redes de Petri estoc´asticas e do modelo
de fluxo de energia pela sele¸c˜ao autom´atica dos dispositivos apropriados a partir da lista
de componentes candidatos. Essa lista corrresponde a um conjunto de componentes que
podem ser utilizados para compor a arquitetura de data center.
V´arios estudos de casos s˜ao apresentados para analisar o impacto ambiental, a dependabilidade
e o custo operacional de energia el´etrica de arquiteturas reais de potˆencia
e refrigera¸c˜ao de data centers.