masterThesis
Um método não supervisionado para o povoamento de ontologias na web
Registro en:
OLIVEIRA, Hilário Tomaz Alves de. Um método não supervisionado para o povoamento de ontologias na web. Recife, 2013. 146 f. Dissertação (mestrado) - UFPE, Centro de Informática , Programa de Pós-graduação em Ciência da Computação, 2013..
Autor
Oliveira, Hilário Tomaz Alves de
Institución
Resumen
A Web Semântica proposta por Berners-Lee tem o objetivo de tornar explícito o significado dos dados disponíveis na Web. Com isso, é possível que esses dados sejam processados tanto por pessoas quanto por agentes inteligentes que passam a ter acesso à semântica dos dados presentes na Web. Entretanto, para que a Web Semântica se torne uma realidade, é necessário que grande parte desses dados estejam anotados semanticamente, algo que não ocorre atualmente. Como forma de solucionar esse problema, é crescente o interesse no desenvolvimento de sistemas capazes de extrair conteúdo semântico automaticamente a partir de fontes de dados não estruturados. Nesse contexto, o objetivo desta dissertação é definir um método automático, não supervisionado e independente de domínio capaz de extrair instâncias de classes ontológicas a partir de fontes de dados não estruturados escritos em linguagem natural disponíveis na Web. A metodologia proposta é guiada por uma ontologia de entrada que define quais conceitos devem ser povoados, e por um conjunto de padrões linguísticos independentes de domínio usados para extrair e classificar os candidatos a instâncias. Com o objetivo de obter uma alta taxa de precisão, neste trabalho é proposto uma Medida de Confiança Combinada (MCC), cujo objetivo é integrar diferentes medidas e heurísticas para classificar os candidatos a instâncias extraídos. Essa medida de confiança combinada foi definida a partir dos resultados de uma exaustiva análise comparativa entre vários parâmetros analisados. O método proposto é capaz ainda de extrair novos padrões linguísticos expandindo o conjunto inicial de padrões adotados. Os resultados obtidos com os experimentos realizados em diferentes domínios indicam que a metodologia proposta é capaz de extrair uma grande quantidade de instâncias de classes, além de integrar novos padrões linguísticos a cada iteração executada.