masterThesis
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares
Registro en:
Autor
Silva Filho, Telmo de Menezes e
Institución
Resumen
A Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a
variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem
naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre
outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para
dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e
generalizada para medir a distância entre instâncias de dados e protótipos.
A distância proposta tem quatro casos especiais. O primeiro caso é a distância
Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O
segundo caso é uma distância intervalar baseada em protótipos que modela subregiões
não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à
distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O
último caso permite à distância modelar classes desbalanceadas, compostas de subregiões
de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos
do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da
distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de
dados intervalares reais são usados nesses experimentos e seus resultados mostram a
utilidade de uma distância localmente ponderada.