masterThesis
PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
Registro en:
Autor
SILVA, Nelson Gutemberg Rocha da
Institución
Resumen
Na última década, a Internet tem crescido de forma surpreendente, tornando-se uma das maiores bases de informações do mundo. Com o surgimento e o rápido cresci-mento de Blogs, Fóruns e Redes Sociais, milhões de usuários tornam públicas suas opi-niões sobre os mais diversos assuntos.
Esse tipo de informação é de grande auxílio para pessoas e empresas na hora de tomar uma decisão. Contudo, toda essa informação está dispersa na Web, em formato livre, tornando impraticável a análise manual dessas opiniões com o objetivo de se obter o “sentimento geral” acerca de um produto ou serviço. Automatizar essa tarefa é a me-lhor alternativa. Porém, interpretar textos em formato livre não é uma tarefa trivial para o computador, devido às irregularidades e à ambiguidade inerentes às línguas naturais.
Nesse contexto, estão surgindo sistemas que tratam as opiniões de forma auto-mática utilizando-se dos conceitos da área de Análise de Sentimentos (AS), também conhecido por Mineração de Opinião. A AS se preocupa em classificar opiniões expres-sas em textos, com respeito a um determinado produto ou serviço, como positivas ou negativas.
Muitos trabalhos foram propostos na área de Análise Sentimentos, porém, a maioria destes provê uma avaliação global para o sentimento expresso no texto. O Tra-balho aqui proposto busca realizar uma análise mais refinada, que é conhecida como Classificação em Nível de Característica. Nesse nível busca-se classificar a polaridade das opiniões sobre cada característica do objeto sendo monitorado.
O processo proposto classifica pares (característica, palavra opinativa), uma vez que alguns adjetivos mudam de polaridade a depender do substantivo que eles qua-lificam (e.g., “cerveja quente”, “pizza quente”). Utilizamos aqui técnicas baseadas em Estatística e Linguística, com apoio da ferramenta SentiWordNet [ESULI & SEBASTI-ANI, 2006]. Resultados experimentais mostraram que o processo tem alta eficácia, su-perando outros métodos existentes.