dc.contributor | Lucena, Sérgio | |
dc.creator | Glauco De Melo, Rony | |
dc.date | 2014-06-12T18:04:02Z | |
dc.date | 2014-06-12T18:04:02Z | |
dc.date | 2010-01-31 | |
dc.identifier | Glauco De Melo, Rony; Lucena, Sérgio. Modelagem e inferência composicional de uma coluna de destilação de uma unidade de coqueamento retardado. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2010. | |
dc.identifier | https://repositorio.ufpe.br/handle/123456789/6309 | |
dc.description | Hoje em dia há uma tendência global de refino de óleos pesados e tecnologias
capazes de converter esses óleos em frações mais leves e com um maior valor
agregado tornam-se indispensáveis. Este fato tem evidenciado os processos
térmicos, como o coqueamento retardado. Uma unidade de coqueamento é
geralmente composta de por três equipamentos fundamentais: a torre fracionadora,
o forno de coqueamento e no mínimo dois tambores de coqueamento que trabalham
em alternância devido à remoção dos sólidos produzidos no processo. A torre
fracionadora tem como objetivo principal o fracionamento dos efluentes oriundos dos
tambores de coque e da corrente de alimentação que pode ser oriunda das torres a
vácuo ou atmosférica, da integração energética de diversas correntes do processo,
bem como do amortecimento dos distúrbios gerados quando há o switch entre os
tambores que mantém a coluna sobre os valores desejados. Para simulação
dinâmica da torre fracionadora partiu-se do modelo, em estado estacionário,
desenvolvido por KAES em ambiente Hysys® utilizando a abordagem por
pseudocomponentes para representação composicional de todas as correntes. O
modelo adaptado foi utilizado para gerar dois diferentes bancos de dados para o
treinamento de redes neurais, as quais foram utilizadas para inferenciar a
composição dos gasóleos de coque leve e pesado. Para construção do estimador
neural, em ambiente Matlab®, foi realizada uma análise de sensibilidade utilizando a
decomposição em valores singulares (SVD) a fim de se selecionar as melhores
variáveis como entradas para o modelo. Na definição da topologia da rede neural,
fez-se uso de um software de busca de topologia, AV Analisador Virtual, para
determinar a melhor topologia possível baseando-se em dois diferentes parâmetros
de escolha, o primeiro com base no erro, e o segundo com base no erro e no
número de neurônios. Avaliaram-se as redes para ambos os bancos de dados
gerados escolhendo-se as melhores redes através do erro médio quadrático. As
composições estimadas foram utilizadas na elaboração de um controle inferencial e
comparados a estruturas de controle baseadas na temperatura de topo e num prato
escolhido | |
dc.description | Agência Nacional do Petróleo, Gás Natural e Biocombustíveis | |
dc.format | application/pdf | |
dc.language | por | |
dc.publisher | Universidade Federal de Pernambuco | |
dc.subject | Coqueamento Retardado | |
dc.subject | Destilação | |
dc.subject | Redes Neurais | |
dc.title | Modelagem e inferência composicional de uma coluna de destilação de uma unidade de coqueamento retardado | |
dc.type | masterThesis | |