masterThesis
Detecção de intrusão em redes de computadores: uma abordagem usando extreme learning machines
Registro en:
Paiva Medeiros de Farias, Gilles; Lorena Inácio de Oliveira, Adriano. Detecção de intrusão em redes de computadores: uma abordagem usando extreme learning machines. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
Autor
Paiva Medeiros de Farias, Gilles
Institución
Resumen
O mundo dos negócios é definido por qualidade, competitividade e luta por fatias de mercado. A informação é uma ferramenta indispensável nesse meio, onde organizações a usam como diferencial competitivo, uma forma de obter vantagem frente aos competidores.
Segundo a Techoje (revista de opinião do IETEC - Instituto de Educação e Tecnologia), a quantidade de informação criada no ano de 2006 seria bastante para escrever 12 pilhas de livros, cada uma medindo 150 milhões de quilômetros, o que corresponde à distância da Terra ao Sol. De acordo com a Techoje, estudos estipulam que essa quantidade teria aumentado até 6 vezes até o ano de 2010.
As redes de computadores são os meios utilizados para o compartilhamento dessas tão valiosas informações e sofrem com constantes tentativas de intrusão e com surgimentos cada vez mais acelerados de softwares maliciosos, que se disseminam pelos sistemas computacionais. Frente a essa realidade, IDS (Intrusion Detection Systems - Sistemas de Detecção de Intrusão) são ferramentas que auxiliam desde usuários comuns até grandes organizações a se manter seguros, contra invasores e ataques das mais diversas naturezas. Apesar de serem ferramentas úteis a seu propósito, IDS´s necessitam de implantação planejada e estruturada, ou efeitos, tais como lentidão no ambiente, alarmes falsos ou intrusões não detectadas podem vir a acontecer.
O presente trabalho foca no estudo da construção de IDS´s, levando em conta as técnicas ELM (Extreme Learning Machine) e OS-ELM (Online Sequential Extreme Learning Machine) aplicadas ao problema. As técnicas citadas são usadas para o treinamento de redes neurais artificias do tipo feedforward e vêm sendo usadas em vários estudos em outras áreas de aplicação. Tais técnicas conseguem resolver problemas de forma mais rápida que técnicas tradicionais de treinamento de redes neurais, como o algoritmo backpropagation.
Os resultados obtidos no estudo mostraram-se relevantes, pois alcançaram boas taxas de generalização e tempo computacional, que são fatores críticos para a área de segurança. Dessa forma, o presente estudo utiliza de forma pioneira as duas técnicas citadas, que pelas suas características, conseguem dar respostas rápidas frente ao surgimento de novos ataques