masterThesis
Uma solução em filtragem de informação para sistemas de recomendação baseada em análise de dados simbólicos
Registro en:
Leite Dantas Bezerra, Byron; de Assis Tenório Carvalho, Francisco. Uma solução em filtragem de informação para sistemas de recomendação baseada em análise de dados simbólicos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004.
Autor
Leite Dantas Bezerra, Byron
Institución
Resumen
Sistemas de Recomendação permitem que sites de Comércio
Eletrônico sugiram produtos aos consumidores provendo informações
relevantes que os ajudem no processo de compra. Para isso é necessária
a aquisição e a adequada utilização do perfil do usuário. O processo de
aquisição pode ser implícito (comprar um livro ou consultar um item em
uma loja on-line) ou explícito (dar uma nota a um filme ou recomendar um
artigo a um amigo). Já as soluções propostas para o segundo problema
podem ser classificadas em duas categorias principais com relação ao tipo
de filtragem adotada: Filtragem Baseada em Conteúdo (baseia-se na
análise da correlação entre o conteúdo dos itens com o perfil do usuário) e
Filtragem Colaborativa (baseada na correlação de perfis de usuários). Tais
técnicas possuem limitações, como escalabilidade na primeira abordagem
e latência na segunda. Contudo, elas são complementares, o que
impulsiona o surgimento de filtragens híbridas, cujo foco é aproveitar o
melhor de cada método. Todavia, as filtragens híbridas não superam
completamente os problemas principais de ambos os métodos.
A motivação deste trabalho surge do desafio de superar os
problemas principais existentes nos métodos de Filtragem Baseada em
Conteúdo. Para isso, o trabalho concentra-se no domínio de recomendação
de filmes, caracterizado por atributos complexos, como sinopse, e no qual
predomina uma aquisição explícita do perfil do usuário. Diante disso, o
presente trabalho apresenta um novo método de filtragem de informação
baseado nas teorias de Análise de Dados Simbólicos.
Na abordagem proposta o perfil é modelado através de um
conjunto de descrições simbólicas modais que sumarizam as informações
dos itens previamente avaliados. Uma função de dissimilaridade que leva
em conta as diferenças em posição e em conteúdo foi criada a fim de
possibilitar a comparação entre um novo item e o perfil do usuário. Para
avaliar o desempenho deste novo método foi modelado um ambiente
experimental baseado no EachMovie e definida uma metodologia para
avaliação dos resultados. Para fins de comparação é utilizada a filtragem
de informação por conteúdo baseado no algoritmo dos k Vizinhos Mais
Próximos (kNN).
A construção de um ambiente experimental de avaliação do
modelo permitiu diagnosticar estatisticamente o melhor desempenho da
filtragem baseada em dados simbólicos modais, tanto em velocidade
quanto em memória, com relação ao método baseado no kNN Conselho Nacional de Desenvolvimento Científico e Tecnológico