dc.contributorCARVALHO, Francisco de Assis Tenório
dc.creatorMACARIO FILHO, Valmir
dc.date2014-06-12T15:57:35Z
dc.date2014-06-12T15:57:35Z
dc.date2009-01-31
dc.identifierMacario Filho, Valmir; de Assis Tenório Carvalho, Francisco. Um novo algoritmo de agrupamento semisupervisionado baseado no Fuzzy C-Means. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifierhttps://repositorio.ufpe.br/handle/123456789/2383
dc.descriptionNas aplicações tradicionais de aprendizagem de máquina, os classificadores utilizam apenas dados rotulados em seu treinamento. Os dados rotulados, por sua vez, são difíceis, caros, consomem tempo e requerem especialistas humanos para serem obtidos em algumas aplicações reais. Entretanto, dados não rotulados são abundantes e fáceis de serem obtidos mas há poucas abordagens que os utilizam no treinamento. Para contornar esse problema existe a aprendizagem semi-supervisionada. A aprendizagem semi-supervisionada utiliza uma grande quantidade de dados não rotulados, juntamente com dados rotulados, com a finalidade de construir classificadores melhores. A abordagem semi-supervisionada obtém resultados melhores do que se utilizassem apenas poucos padrões rotulados em uma abordagem supervisionada ou se utilizassem apenas padrões não rotulados numa abordagem não supervisionada. O algoritmo semi-supervisionado pode ser uma extensão de um algoritmo não supervisionado. Um algoritmo desse tipo pode se basear em algoritmos de agrupamento não supervisionado, adicionando-se um termo em sua função objetivo que faz uso de informações rotuladas para guiar o processo de aprendizagem do algoritmo. Este trabalho apresenta um estudo da aprendizagem semi-supervisionada e apresenta um novo algoritmo de agrupamento semi-supervisionado baseado no algoritmo Fuzzy C-Means. Também, apresenta uma validação cruzada para o contexto de algoritmos semi-supervisionados. Estudos experimentais são apresentados. Primeiro, o algoritmo semi-supervisionado proposto é avaliado com dados completamente rotulados, comparado com alguns classificadores totalmente supervisionados. Depois, o mesmo algoritmo semi-supervisionado é, então, avaliado e comparado com três algoritmos também de agrupamento semi-supervisionados que otimizam uma função objetivo no contexto da aprendizagem a partir de dados parcialmente rotulados. Além disso, o comportamento do algoritmo é discutido e os resultados examinados através da construção de intervalos de confiança. Derivou deste trabalho, uma ferramenta contendo os algoritmos semi-supervisionados e o ambiente experimental para validação desses algoritmos foi desenvolvida. Desse modo, foi possível certificar que o novo algoritmo de agrupamento semi-supervisionad apresenta desempenho melhor, ou pelo menos do mesmo nível, que algoritmos já consolidados na literatura
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Pernambuco
dc.subjectAprendizagem Semi-Supervisionada
dc.subjectAgupamento Semi-Supervisionado
dc.subjectAgrupamento Fuzzy
dc.subjectFunção Objetivo
dc.subjectClassificação de Padrões
dc.subjectValidação Cruzada
dc.titleUm novo algoritmo de agrupamento semisupervisionado baseado no Fuzzy C-Means
dc.typemasterThesis


Este ítem pertenece a la siguiente institución