dc.contributorLUDERMIR, Teresa Bernarda
dc.creatorZARTH, Antonio Miguel Faustini
dc.date2014-06-12T15:57:14Z
dc.date2014-06-12T15:57:14Z
dc.date2010-01-31
dc.identifierMiguel Faustini Zarth, Antonio; Bernarda Ludermir, Teresa. Otimização evolucionária multimodal de redes neurais artificiais com evolução diferencial. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
dc.identifierhttps://repositorio.ufpe.br/handle/123456789/2353
dc.descriptionEste trabalho propõe uma metodologia de otimização multimodal e simultânea de pesos e arquiteturas de Redes Neurais Artificiais (RNAs) com Evolução Diferencial. O sistema neural híbrido proposto busca por arquiteturas de forma construtiva e realiza o ajuste dos pesos invasivamente, dispensando assim o uso de algoritmos de treinamento por correção de erros. A motivação para o desenvolvimento do presente trabalho é propor uma abordagem que contorne a sensibilidade natural dos métodos construtivos e invasivos aos mínimos locais , tanto na busca de arquiteturas, quanto no ajuste dos pesos das RNAs. Para isto, utilizou-se uma estraté- gia implícita de manutenção da diversidade inspirada na computação evolucionária paralela. A combinação desta estratégia em um sistema neural híbrido, assim como sua adaptação em uma metodologia construtiva e invasiva, é a principal inovação deste trabalho. Como base evolucionária da metodologia proposta, foram utilizadas a Evolução Diferencial em sua forma original e também uma recente variação deste algoritmo, a Evolução Diferencial baseada em Oposição. Desta forma, esta dissertação possui dois objetivos primários: (1) avaliar a performance da metodologia proposta comparando com outros sistemas neurais híbridos encontrados na literatura; (2) avaliar e comparar o desempenho dos dois algoritmos evolucionários utilizados na otimização de redes neurais. Os experimentos foram conduzidos com o propósito de otimizar redes Multi-Layer Perceptron (MLP) para problemas de classificação. Os critérios utilizados para análise de performance do método foram a capacidade de generalização, tamanho da arquitetura encontrada e tempo de convergência. Os resultados obtidos indicam que o método proposto possui grande capacidade de generalização com qualidade de resposta superior ou equivalente a muitos métodos encontrados na literatura, e geralmente com menor arquitetura. Além do mais, a metodologia multimodal proposta obteve estes bons resultados com velocidade plausível, necessitando de poucos segundos para convergir. Estas análises ressaltam a boa performance geral do sistema neural híbrido proposto, cuja característica uni-modular sugere que bons resultados podem ser obtidos sem excessiva complexidade e em tempo hábil
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Pernambuco
dc.subjectSistemas Híbridos Inteligentes
dc.subjectRedes Neurais Arti&#64257
dc.subjectciais
dc.subjectEvolução Diferencial
dc.subjectOtimização de Pesos
dc.subjectArquitetura
dc.titleOtimização evolucionária multimodal de redes neurais artificiais com evolução diferencial
dc.typemasterThesis


Este ítem pertenece a la siguiente institución