masterThesis
Investigação sobre o efeito de ruído na generalização de redes neurais sem peso em problemas de classificação binária
Registro en:
Ferreira de Oliveira Neto, Rosalvo; Jorge Leitão Adeodato, Paulo. Investigação sobre o efeito de ruído na generalização de redes neurais sem peso em problemas de classificação binária. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.
Autor
Ferreira de Oliveira Neto, Rosalvo
Institución
Resumen
Redes neurais com neurônios baseados em memória RAM (random access memory) são
caracterizadas por serem implementáveis em hardware e por serem uma opção atraente na
solução de problemas definidos em espaço de entradas binárias. No entanto, para problemas
definidos no espaço de entradas reais, existe uma tarefa difícil que é encontrar a representação
adequada desses valores, sem perder o poder de generalização em tarefas de classificação de
padrões.
Este trabalho investiga a utilização de ruído gaussiano aditivo nas variáveis de
entradas continuas para aumentar o poder de generalização da rede. Dessa forma uma maior
quantidade de posições de memória pode ser treinada , formando uma região de vizinhança
comum para padrões semelhantes, conhecida como bacia de atração.
Foram realizadas análises da influência da adição de ruído durante o treinamento do
n-tuple classifier, que é um tipo de rede booleana, onde se pôde comprovar que o treinamento
com ruído aumenta o poder de generalização da rede. O desempenho do modelo investigado
foi comparado com resultados obtidos pela rede neural Multi Layer Perceptron (MLP).
Para o estudo foram selecionadas quatro bases de dados públicas, três de um
conhecido benchmark da área e outra de recente competição internacional. Resultados
experimentais mostram que o modelo investigado obtém desempenho equivalente ao da rede
neural MLP para os problemas utilizados