dc.contributor | LUDERMIR, Teresa Bernarda | |
dc.creator | GOMES, Gecynalda Soares da Silva | |
dc.date | 2014-06-12T15:52:11Z | |
dc.date | 2014-06-12T15:52:11Z | |
dc.date | 2010-01-31 | |
dc.identifier | Soares da Silva Gomes, Gecynalda; Bernarda Ludermir, Teresa. Novas funções de ativação em redes neurais artificiais multilayer perceptron. 2010. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. | |
dc.identifier | https://repositorio.ufpe.br/handle/123456789/1757 | |
dc.description | Em redes neurais artificiais (RNAs), as funções de ativação mais comumente usadas são a
função sigmóide logística e a função tangente hiperbólica, dependendo das características dos
dados. Entretanto, a escolha da função de ativação pode influenciar fortemente o desempenho
e a complexidade da rede neural. Neste trabalho, com o objetivo de melhorar o desempenho
dos modelos de redes neurais, propomos o uso de novas funções de ativação no processamento
das unidades da rede neural. Aqui, as funções não-lineares implementadas são as inversas das
funções de ligação usadas em modelos de regressão binomial, essas funções são: complemento
log-log, probit, log-log e Aranda, sendo que esta última função apresenta um parâmetro livre e
é baseada na família de transformações Aranda-Ordaz.
Uma avaliação dos resultados do poder de predição com estas novas funções através de
simulação Monte Carlo é apresentada. Além disso, foram realizados diversos experimentos
com aproximação de funções contínuas e arbitrárias, com regressão e com previsão de séries
temporais.
Na utilização da função de ativação com parâmetro livre, duas metodologias foram usadas
para a escolha do parâmetro livre, l . A primeira foi baseada em um procedimento semelhante
ao de busca em linha (line search). A segunda foi usada uma metodologia para a otimização
global dessa família de funções de ativação com parâmetro livre e dos pesos das conexões
entre as unidades de processamento da rede neural. A ideia central é otimizar simultaneamente
os pesos e a função de ativação usada em uma rede multilayer perceptron (MLP), através de
uma abordagem que combina as vantagens de simulated annealing, de tabu search e de um
algoritmo de aprendizagem local.
As redes utilizadas para realizar esses experimentos foram treinadas através dos seguintes
algoritmos de aprendizagem: backpropagation (BP), backpropagation com momentum (BPM),
backpropagation baseado no gradiente conjugado com atualizações Fletcher-Reeves (CGF) e
Levenberg-Marquardt (LM) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
dc.format | application/pdf | |
dc.language | por | |
dc.publisher | Universidade Federal de Pernambuco | |
dc.subject | Redes neurais artificiais | |
dc.subject | Função de ativação | |
dc.subject | Complemento log-log | |
dc.subject | Probit | |
dc.subject | Log-log | |
dc.subject | Aranda | |
dc.subject | Assimetria | |
dc.subject | Algoritmos de aprendizagem | |
dc.title | Novas funções de ativação em redes neurais artificiais multilayer perceptron | |
dc.type | doctoralThesis | |