dc.contributorde Assis Tenório Carvalho, Francisco
dc.creatorde Andrade Lima Neto, Eufrasio
dc.date2014-06-12T15:49:15Z
dc.date2014-06-12T15:49:15Z
dc.date2008-01-31
dc.identifierde Andrade Lima Neto, Eufrasio; de Assis Tenório Carvalho, Francisco. Modelos de regressão para dados simbólicos de natureza intervalar. 2008. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.
dc.identifierhttps://repositorio.ufpe.br/handle/123456789/1344
dc.descriptionO processo de descoberta de conhecimento tem por objetivo a extração de informações úteis (conhecimento) em bases de dados. As ferramentas utilizadas para execução do processo de extração de conhecimento são genéricas e derivadas de diferentes áreas de conhecimento tais como da estatística, aprendizagem de máquina e banco de dados. Dentre as técnicas estatísticas, os modelos de regressão procuram classificar ou prever o comportamento de uma variável dependente (resposta) a partir das informações provenientes de um conjunto de variáveis independentes (explicativas). A análise de dados simbólicos (SDA) (Bock & Diday 2000) tem sido introduzida como uma novo domínio relacionado à análise multivariada, reconhecimento de padrões e inteligência artificial com o objetivo de estender os métodos estatísticos e de análise exploratória de dados para dados simbólicos. O objetivo deste trabalho é propor métodos de regressão linear e não-linear para dados simbólicos que apresentem uma performance de predição superior ao método proposto por Billard & Diday (2000), no caso de variáveis simbólicas tipo intervalo
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Pernambuco
dc.subjectModelos de Regressão
dc.subjectVariável Intervalar
dc.subjectDados Simbólicos
dc.titleModelos de regressão para dados simbólicos de natureza intervalar
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución