Brasil | Artículos de revistas
dc.creatorBertini Junior
dc.creatorJoao Roberto; Nicoletti
dc.creatorMaria do Carmo; Zhao
dc.creatorLiang
dc.date2017
dc.datejan
dc.date2017-11-13T13:57:56Z
dc.date2017-11-13T13:57:56Z
dc.date.accessioned2018-03-29T06:11:20Z
dc.date.available2018-03-29T06:11:20Z
dc.identifierNeural Networks. Pergamon-elsevier Science Ltd , v. 85, p. 69 - 84, 2017.
dc.identifier0893-6080
dc.identifier1879-2782
dc.identifierWOS:000390251700007
dc.identifier10.1016/j.neunet.2016.09.008
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0893608016301381?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/330151
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1367176
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionGraph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph - AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description85
dc.description69
dc.description84
dc.descriptionFAPESP [2012/00544-8]
dc.descriptionCNPq [302754/2015-6, 303012/2015-3]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherPergamon-Elsevier Science LTD
dc.publisherOxford
dc.relationNeural Networks
dc.rightsfechado
dc.sourceWOS
dc.subjectData-graph Construction
dc.subjectGraph-based Classification
dc.subjectMulticlass Classification
dc.subjectAttribute-based Decision Graphs
dc.subjectMissing Attribute Values
dc.titleAttribute-based Decision Graphs: A Framework For Multiclass Data Classification
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución