dc.creatorGrama
dc.creatorLino; Negreiros
dc.creatorCaio J. C.; Oliveira
dc.creatorAilton R.
dc.date2017
dc.datefev
dc.date2017-11-13T13:57:19Z
dc.date2017-11-13T13:57:19Z
dc.date.accessioned2018-03-29T06:10:38Z
dc.date.available2018-03-29T06:10:38Z
dc.identifierAnnali Di Matematica Pura Ed Applicata. Springer Heidelberg, v. 196, p. 165 - 200, 2017.
dc.identifier0373-3114
dc.identifier1618-1891
dc.identifierWOS:000393687100009
dc.identifier10.1007/s10231-016-0568-5
dc.identifierhttps://link-springer-com.ez88.periodicos.capes.gov.br/article/10.1007%2Fs10231-016-0568-5
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329990
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1367015
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn the first part of this paper, we study geometric formality for generalized flag manifolds, including full flag manifolds of exceptional Lie groups. In the second part, we deal with the problem of the classification of invariant almost complex structures on generalized flag manifolds using topological methods.
dc.description196
dc.description1
dc.description165
dc.description200
dc.descriptionCNPq [476024/2012-9]
dc.descriptionFapesp [2012/18780-0, 2014/17337-0]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherSpringer Heidelberg
dc.publisherHeidelberg
dc.relationAnnali di Matematica Pura ed Applicata
dc.rightsfechado
dc.sourceWOS
dc.subjectGeneralized Flag Manifolds
dc.subjectGeometric Formality
dc.subjectInvariant Almost Complex Geometry
dc.titleInvariant Almost Complex Geometry On Flag Manifolds: Geometric Formality And Chern Numbers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución