dc.creatorGontijo
dc.creatorR. G.
dc.date2017
dc.datejul
dc.date2017-11-13T13:56:29Z
dc.date2017-11-13T13:56:29Z
dc.date.accessioned2018-03-29T06:09:49Z
dc.date.available2018-03-29T06:09:49Z
dc.identifierJournal Of Magnetism And Magnetic Materials. Elsevier Science Bv, v. 434, p. 91 - 99, 2017.
dc.identifier0304-8853
dc.identifier1873-4766
dc.identifierWOS:000399606700013
dc.identifier10.1016/j.jmmm.2017.03.051
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0304885317300148?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329865
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366890
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis work explores, from a numerical perspective, the role of particle rotational inertia on the magnetization dynamics of ferrofluids. A robust numerical method is used for this purpose. The numerical research code is based on the use of a convergent long range dipolar interactions technique. These interactions are computed through a sophisticated Ewald summation procedure. The balance of linear and angular momentum is solved for N ensembles containing N particles each. Long range dipolar magnetic torques are solved in a periodic system of Lattices, spread in physical and reciprocal spaces to assure the convergence on the calculation of the suspension transport properties. A small effect of particle rotational inertia is considered. The system of equations of N particles distributed randomly in space is solved simultaneously for different parallel realizations in order to achieve a meaningful statistics of our many-body system. The results are focused on the behavior of the suspension magnetization for different particle concentrations and intensities of rotational inertia. The physical parameter used to express this effect is the particle rotational Stokes number. The simulations indicate that, from a numerical perspective, rotational inertia may induce a relevant, but often neglected, effect on the magnetization equilibrium of a ferrofluid. This finding is relevant for the community of numericists interested in using Langevin Dynamics applied to dipolar suspensions. We propose an expression with a correction on the effect of the particle rotational inertia to compute the magnetization of a magnetic fluid. The results obtained in this work are compatible with some insights previously pointed out in former scientifical works. (C) 2017 Elsevier B.V. All rights reserved.
dc.description434
dc.description91
dc.description99
dc.descriptionCNPq-Brazil [441496/2014-8]
dc.descriptionFAPDF-Brazil [4322.25.29913.26062015]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherElsevier Science BV
dc.publisherAmsterdam
dc.relationJournal of Magnetism and Magnetic Materials
dc.rightsfechado
dc.sourceWOS
dc.subjectMagnetic Suspensions
dc.subjectMagnetization Dynamics
dc.subjectEwald Summation
dc.subjectParticle Rotational Inertia
dc.subjectDipolar Matter
dc.titleA Numerical Perspective On The Relation Between Particle Rotational Inertia And The Equilibrium Magnetization Of A Ferrofluid
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución