dc.creatorda Silva Santim
dc.creatorChristiano Garcia; Rosa
dc.creatorEugenio Spano
dc.date2016
dc.datemar
dc.date2017-11-13T13:55:53Z
dc.date2017-11-13T13:55:53Z
dc.date.accessioned2018-03-29T06:09:22Z
dc.date.available2018-03-29T06:09:22Z
dc.identifierInternational Journal For Numerical Methods In Fluids . Wiley-blackwell, v. 80, p. 536 - 568, 2016.
dc.identifier0271-2091
dc.identifier1097-0363
dc.identifierWOS:000370162200002
dc.identifier10.1002/fld.4165
dc.identifierhttp://onlinelibrary.wiley.com/doi/10.1002/fld.4165/full
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329757
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366782
dc.descriptionThis work presents an approximate Riemann solver to the transient isothermal drift-flux model. The set of equations constitutes a non-linear hyperbolic system of conservation laws in one space dimension. The elements of the Jacobian matrix A are expressed through exact analytical expressions. It is also proposed a simplified form of A considering the square of the gas to liquid sound velocity ratio much lower than one. This approximation aims to express the eigenvalues through simpler algebraic expressions. A numerical method based on the Gudunov's fluxes is proposed employing an upwind and a high order scheme. The Roe linearization is applied to the simplified form of A. The proposed solver is validated against three benchmark solutions and two experimental pipe flow data. Copyright (c) 2015 John Wiley & Sons, Ltd.
dc.description80
dc.description9
dc.description536
dc.description568
dc.descriptionPetrobras [0050-0075324.12.2]
dc.languageEnglish
dc.publisherWiley-Blackwell
dc.publisherHoboken
dc.relationInternational Journal for Numerical Methods in Fluids
dc.rightsfechado
dc.sourceWOS
dc.subjectDrift-flux Model
dc.subjectApproximate Riemann Solver
dc.subjectRoe Linearization
dc.subjectGas-liquid Flow
dc.subjectNon-linear System
dc.subjectTransient
dc.titleRoe-type Riemann Solver For Gas-liquid Flows Using Drift-flux Model With An Approximate Form Of The Jacobian Matrix
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución