Artículos de revistas
Graded A-identities For The Matrix Algebra Of Order Two
Registro en:
International Journal Of Algebra And Computation . World Scientific Publ Co Pte Ltd, v. 26, p. 1617 - 1631, 2016.
0218-1967
1793-6500
WOS:000391558300007
10.1142/S0218196716500715
Autor
Brandao
Antonio Pereira
Jr.; Goncalves
Dimas Jose; Koshlukov
Plamen
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Let F be a field of characteristic 0 and let R = M-2(F). The algebra R admits a natural grading R = R-0 circle plus R-1 by the cyclic group Z(2) of order 2. In this paper, we describe the Z(2)-graded A-identities for R. Recall that an A-identity for an algebra is a multilinear polynomial identity for that algebra which is a linear combination of the monomials x(sigma)(1) . . . x(sigma)(n) where sigma runs over all even permutations of {1,..., n} that is sigma is an element of A(n), the nth alternating group. We first introduce the notion of an A-identity in the case of graded polynomials, then we describe the graded A-identities for R, and finally we compute the corresponding graded A-codimensions. 26 8 1617 1631 FAPESP [2014/09310-5] CNPq [480139/2012-1, 304632/2015-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)