dc.creatorFerreira
dc.creatorLucas C. F.; Lima
dc.creatorLidiane S. M.
dc.date2016
dc.date2017-11-13T13:55:19Z
dc.date2017-11-13T13:55:19Z
dc.date.accessioned2018-03-29T06:08:46Z
dc.date.available2018-03-29T06:08:46Z
dc.identifierPublicacions Matematiques . Univ Autonoma Barcelona , v. 60, p. 525 - 550, 2016.
dc.identifier0214-1493
dc.identifierWOS:000379424100008
dc.identifier10.5565/PUBLMAT_60216_08
dc.identifierhttp://mat.uab.cat/pubmat/volums/update_navegador/volum_id:101
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329620
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366645
dc.descriptionWe consider a family of dissipative active scalar equations outside the L-2-space. This was introduced in [7] and its velocity fields are coupled with the active scalar via a class of multiplier operators which morally behave as derivatives of positive order. We prove global well-posedness and time-decay of solutions, without smallness assumptions, for initial data belonging to the critical Lebesgue space Ln/2 gamma-beta(R-n) which is a class larger than that of the above reference. Symmetry properties of solutions are investigated depending on the symmetry of initial data and coupling operators.
dc.description60
dc.description2
dc.description525
dc.description550
dc.languageEnglish
dc.publisherUniv Autonoma Barcelona
dc.publisherBellaterra
dc.relationPublicacions Matematiques
dc.rightsfechado
dc.sourceWOS
dc.subjectActive Scalar Equations
dc.subjectGlobal Well-posedness
dc.subjectDecay Of Solutions
dc.subjectSymmetry
dc.subjectCritical Spaces
dc.titleGlobal Well-posedness And Symmetries For Dissipative Active Scalar Equations With Positive-order Couplings
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución