dc.creatorDuarte
dc.creatorEdson; Wainer
dc.creatorJacques
dc.date2017
dc.datemar
dc.date2017-11-13T13:54:51Z
dc.date2017-11-13T13:54:51Z
dc.date.accessioned2018-03-29T06:08:21Z
dc.date.available2018-03-29T06:08:21Z
dc.identifierPattern Recognition Letters. Elsevier Science Bv, v. 88, p. 6 - 11, 2017.
dc.identifier0167-8655
dc.identifier1872-7344
dc.identifierWOS:000396957800002
dc.identifier10.1016/j.patrec.2017.01.007
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0167865517300077?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329520
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366545
dc.descriptionHyperparameter tuning is a mandatory step for building a support vector machine classifier. In this work, we study some methods based on metrics of the training set itself, and not the performance of the classifier on a different test set - the usual cross-validation approach. We compare cross-validation (5-fold) with Xi-alpha, radius-margin bound, generalized approximate cross validation, maximum discrepancy and distance between two classes on 110 public binary data sets. Cross validation is the method that resulted in the best selection of the hyper-parameters, but it is also the method with one of the highest execution time. Distance between two classes (DBTC) is the fastest and the second best ranked method. We discuss that DBTC is a reasonable alternative to cross validation when training/hyperparameter-selection times are an issue and that the loss in accuracy when using DBTC is reasonably small. (C) 2017 Published by Elsevier B.V.
dc.description88
dc.description6
dc.description11
dc.languageEnglish
dc.publisherElsevier Science BV
dc.publisherAmsterdam
dc.relationPattern Recognition Letters
dc.rightsfechado
dc.sourceWOS
dc.subjectSvm
dc.subjectInternal Metrics
dc.subjectCross Validation
dc.subjectHyper-parameter Tuning
dc.subjectModel Selection
dc.titleEmpirical Comparison Of Cross-validation And Internal Metrics For Tuning Svm Hyperparameters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución