dc.creatorEsmi
dc.creatorEstevao; Sussner
dc.creatorPeter; Sandri
dc.creatorSandra
dc.date2016
dc.datejun
dc.date2017-11-13T13:54:43Z
dc.date2017-11-13T13:54:43Z
dc.date.accessioned2018-03-29T06:08:10Z
dc.date.available2018-03-29T06:08:10Z
dc.identifierFuzzy Sets And Systems. Elsevier Science Bv, v. 292, p. 242 - 260, 2016.
dc.identifier0165-0114
dc.identifier1872-6801
dc.identifierWOS:000371786900015
dc.identifier10.1016/j.fss.2015.04.004
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0165011415001888?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329477
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366502
dc.descriptionThis paper introduces a new class of fuzzy associative memories (FAMs) called tunable equivalence fuzzy associative memories, for short tunable E-FAMs or TE-FAMs, that are determined by the application of parametrized equivalence measures in the hidden nodes. Tunable E-FAMs belong to the class of Theta-FAMs that have recently appeared in the literature. In contrast to previous Theta-FAM models, tunable E-FAMs allow for the extraction of a fundamental memory set from the training data by means of an algorithm that depends on the evaluation of equivalence measures. Furthermore, we are able to optimize not only the weights corresponding to the contributions of the hidden nodes but also the contributions of the attributes of the data by tuning the parametrized equivalence measures used in a TE-FAM model. The computational effort involved in training tunable TE-FAMs is very low compared to the one of the previous Theta-FAM training algorithm. (C) 2015 Elsevier B.V. All rights reserved.
dc.description292
dc.description242
dc.description260
dc.languageEnglish
dc.publisherElsevier Science BV
dc.publisherAmsterdam
dc.relationFuzzy Sets and Systems
dc.rightsfechado
dc.sourceWOS
dc.subjectParametrized Equivalence Measure
dc.subjectFuzzy Associative Memory
dc.subjectTunable Equivalence Fuzzy Associative Memory
dc.subjectSelection Of Fundamental Memories
dc.subjectSupervised Learning
dc.subjectClassification
dc.titleTunable Equivalence Fuzzy Associative Memories
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución