Artículos de revistas
A Global Two-dimensional Version Of Smale's Cancellation Theorem Via Spectral Sequences
Registro en:
Ergodic Theory And Dynamical Systems . Cambridge Univ Press, v. 36, p. 1795 - 1838, 2016.
0143-3857
1469-4417
WOS:000382852300006
10.1017/etds.2014.142
Autor
Bertolim
M. A.; Lima
D. V. S.; Mello
M. P.; De Rezende
K. A.; Da Silveira
M. R.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) In this article, Conley's connection matrix theory and a spectral sequence analysis of a filtered Morse chain complex (C, Delta) are used to study global continuation results for flows on surfaces. The briefly described unfoldings of Lyapunov graphs have been proved to be a well-suited combinatorial tool to keep track of continuations. The novelty herein is a global dynamical cancellation theorem inferred from the differentials of the spectral sequence (E-r, d(r)). The local version of this theorem relates differentials dr of the r th page E-r to Smale's theorem on cancellation of critical points. 36 1795 1838 Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2010/08579-0] Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [302592/2010-5] FAPESP [2012/18780-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)