dc.creatorLara
dc.creatorDanielle; Marchesi
dc.creatorSimone; Martins
dc.creatorRenato Vidal
dc.date2016
dc.datemaio
dc.date2017-11-13T13:54:18Z
dc.date2017-11-13T13:54:18Z
dc.date.accessioned2018-03-29T06:07:42Z
dc.date.available2018-03-29T06:07:42Z
dc.identifierInternational Journal Of Mathematics . World Scientific Publ Co Pte Ltd, v. 27, p. , 2016.
dc.identifier0129-167X
dc.identifier1793-6519
dc.identifierWOS:000376588300008
dc.identifier10.1142/S0129167X16500452
dc.identifierhttp://www.worldscientific.com/doi/abs/10.1142/S0129167X16500452
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329365
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366390
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionLet C be an integral and projective curve whose canonical model C' lies on a rational normal scroll S of dimension n. We mainly study some properties on C, such as gonality and the kind of singularities, in the case where n = 2 and C is non-Gorenstein, and in the case where n = 3, the scroll S is smooth, and C' is a local complete intersection inside S. We also prove that the canonical model of a rational monomial curve with just one singular point lies on a surface scroll if and only if the gonality of the curve is at most 3, and that it lies on a threefold scroll if and only if the gonality is at most 4.
dc.description27
dc.description5
dc.descriptionFAPESP [07481-1/2012, 19676-7/2014]
dc.descriptionCNPq [307978/2012-5]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherWorld Scientific Publ CO PTE LTD
dc.publisherSingapore
dc.relationInternational Journal of Mathematics
dc.rightsfechado
dc.sourceWOS
dc.subjectNon-gorenstein Curve
dc.subjectCanonical Model
dc.subjectTrigonal Non-gorenstein Curve
dc.subjectScrolls
dc.titleCurves With Canonical Models On Scrolls
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución