dc.creatorGiacoumidis
dc.creatorE.; Le
dc.creatorS. T.; Aldaya
dc.creatorI.; Wei
dc.creatorJ. L.; McCarthy
dc.creatorM.; Doran
dc.creatorN. J.; Eggleton
dc.creatorB. J.
dc.date2016
dc.date2017-11-13T13:50:40Z
dc.date2017-11-13T13:50:40Z
dc.date.accessioned2018-03-29T06:07:10Z
dc.date.available2018-03-29T06:07:10Z
dc.identifier978-1-9435-8007-1
dc.identifier2016 Optical Fiber Communications Conference And Exhibition (ofc). Ieee, p. , 2016.
dc.identifierWOS:000382938100545
dc.identifierhttp://ieeexplore.ieee.org/document/7537747/
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329236
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366261
dc.descriptionA novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing similar to 1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE. (C) 2016 Optical Society of America
dc.descriptionOptical Fiber Communications Conference and Exhibition (OFC)
dc.descriptionMAR 20-24, 2016
dc.descriptionAnaheim, CA
dc.languageEnglish
dc.publisherIEEE
dc.publisherNew York
dc.relation2016 Optical Fiber Communications Conference and Exhibition (OFC)
dc.rightsfechado
dc.sourceWOS
dc.titleExperimental Comparison Of Artificial Neural Network And Volterra Based Nonlinear Equalization For Co-ofdm
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución