dc.creatorQuito
dc.creatorVictor L.; Titum
dc.creatorParaj; Pekker
dc.creatorDavid; Refael
dc.creatorGil
dc.date2016
dc.dateset
dc.date2017-11-13T13:45:48Z
dc.date2017-11-13T13:45:48Z
dc.date.accessioned2018-03-29T06:00:31Z
dc.date.available2018-03-29T06:00:31Z
dc.identifierPhysical Review B. Amer Physical Soc, v. 94, p. , 2016.
dc.identifier2469-9950
dc.identifier2469-9969
dc.identifierWOS:000383858300001
dc.identifier10.1103/PhysRevB.94.104202
dc.identifierhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.104202
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329109
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366134
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe flow-equation method was proposed by Wegner as a technique for studying interacting systems in one dimension. Here, we apply this method to a disordered one-dimensional model with power-law decaying hoppings. This model presents a transition as function of the decaying exponent alpha. We derive the flow equations and the evolution of single-particle operators. The flow equation reveals the delocalized nature of the states for alpha < 1/2. Additionally, in the regime alpha > 1/2, we present a strong-bond renormalization group structure based on iterating the three-site clusters, where we solve the flow equations perturbatively. This renormalization group approach allows us to probe the critical point (alpha = 1). This method correctly reproduces the critical level-spacing statistics and the fractal dimensionality of the eigenfunctions.
dc.description94
dc.description10
dc.descriptionNSF [DMR-1410435]
dc.descriptionInstitute of Quantum Information and Matter, an NSF Frontier center - Gordon and Betty Moore Foundation
dc.descriptionPackard Foundation
dc.descriptionFAPESP [2012/17082-7, 2009/17531-3]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherAmer Physical Soc
dc.publisherCollege Park, Maryland
dc.relationPhysical Review B
dc.rightsaberto
dc.sourceWOS
dc.subjectMetal-insulator-transition
dc.subjectMany-body-localization
dc.subjectRandom-matrix Theory
dc.subjectAnderson Transition
dc.subjectDipole Interaction
dc.subjectVibrational-modes
dc.subjectHamiltonians
dc.subjectAbsence
dc.subjectChain
dc.subjectRenormalization
dc.titleLocalization Transition In One Dimension Using Wegner Flow Equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución