dc.creatorCabrera-Baez
dc.creatorM.; Naranjo-Uribe
dc.creatorA.; Osorio-Guillen
dc.creatorJ. M.; Rettori
dc.creatorC.; Avila
dc.creatorM. A.
dc.date2017
dc.datemar
dc.date2017-11-13T13:45:47Z
dc.date2017-11-13T13:45:47Z
dc.date.accessioned2018-03-29T06:00:30Z
dc.date.available2018-03-29T06:00:30Z
dc.identifierPhysical Review B. Amer Physical Soc, v. 95, p. , 2017.
dc.identifier2469-9950
dc.identifier2469-9969
dc.identifierWOS:000396001800006
dc.identifier10.1103/PhysRevB.95.104407
dc.identifierhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.104407
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329106
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366131
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionGdFe2Zn20 is a complex cagelike compound with an unusually high ferromagnetic ordering temperature (T-C = 86 K) for a very diluted Gd3+ magnetic sublattice, embedded in a matrix that features strong electronelectron correlations. Here, we report on a magnetic and electronic study of the substitutional intermetallic system Gd(Co1-y Fe-y)(2)Zn-20 combining magnetizationmeasurements plus first-principles density functional theory (DFT) calculations with temperature-dependent electron spin resonance (ESR). After accounting for electron-electron correlations and itinerant molecular field effects, the ESR results indicate that the exchange interaction between the Gd3+ is processed via a single band of d-type electrons at the Fermi level and the exchange interaction is covalent in nature [J(0)(fd) < 0] with a strong conduction electron (ce) momentum transfer dependence [Jfd (q)]. The DFT calculations support this scenario by indicating a major contribution of d-type ce at the Fermi level and a spin polarization in (Y, Gd) Fe2Zn20 wherein the most stable configuration is antiferromagnetic between Gd3+ and ce spins. Our results demonstrate that the standard Ruderman-Kittel-Kasuya-Yosida mechanism cannot explain the ferromagnetic behavior of GdFe2Zn20 and a superexchangelike mechanism is proposed for this magnetic interaction. An "extended phase diagram" for the double substitution sequence YCo2Zn20. GdCo2Zn20. GdFe2Zn20 is presented and discussed.
dc.description95
dc.description10
dc.descriptionBrazilian agencies FAPESP [2011/19924-2, 2012/17562-9]
dc.descriptionCNPq
dc.descriptionFINEP
dc.descriptionCAPES
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageEnglish
dc.publisherAmer Physical Soc
dc.publisherCollege Park, Maryland
dc.relationPhysical Review B
dc.rightsaberto
dc.sourceWOS
dc.subjectSpin-resonance Absorption
dc.subjectIntermetallic Compounds
dc.subjectMetals
dc.subjectRelaxation
dc.subjectAlloys
dc.subjectSystem
dc.subjectRh
dc.titleConduction Electrons Mediating The Evolution From Antiferromagnetic To Ferromagnetic Ordering In Gd(co1-yfey)(2)zn-20 (0 <= Y <= 1)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución