Artículos de revistas
Evaluation Of Artifacts Generated By Zirconium Implants In Cone-beam Computed Tomography Images
Registro en:
Oral Surgery Oral Medicine Oral Pathology Oral Radiology. Elsevier Science Inc, v. 123, p. 265 - 272, 2017.
2212-4403
1528-395X
WOS:000397025400019
10.1016/j.oooo.2016.10.021
Autor
Vasconcelos
Taruska Ventorini; Bechara
Boulos B.; McMahan
Clyde Alex; Freitas
Deborah Queiroz; Noujeim
Marcel
Institución
Resumen
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. Study Design. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean +/- standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Results. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Conclusions. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. 123 2 265 272 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Foundation (Brazil) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)