dc.creatorRuppert
dc.creatorGuilherme C. S.; Chiachia
dc.creatorGiovani; Bergo
dc.creatorFelipe P. G.; Favretto
dc.creatorFernanda O.; Yasuda
dc.creatorClarissa L.; Rocha
dc.creatorAnderson; Falcao
dc.creatorAlexandre X.
dc.date2017
dc.date2017-11-13T13:44:53Z
dc.date2017-11-13T13:44:53Z
dc.date.accessioned2018-03-29T05:59:33Z
dc.date.available2018-03-29T05:59:33Z
dc.identifierComputer Methods In Biomechanics And Biomedical Engineering: Imaging & Visualization . Taylor & Francis Ltd, v. 5, p. 138 - 156, 2017.
dc.identifier2168-1163
dc.identifier2168-1171
dc.identifierWOS:000396689900006
dc.identifier10.1080/21681163.2015.1029643
dc.identifierhttp://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1029643
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328884
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1365909
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionWe propose an automatic 3D medical image registration method that combines the watershed transform from greyscale marker, to effectively reduce the number of key points needed for registration, with a robust optimisation algorithm, called multi-scale parameter search (MSPS), to quickly estimate the mapping function. We evaluate it for rigid and intra-subject registration of pre- and post-surgery MR-T1 images of the brain. The visual analysis of its effectiveness is facilitated by a colour-coding scheme. Extensive experiments show that our approach is very accurate, robust to noise and provides 3D registration in less than 40 s, with no multi-resolution image schemes needed. We also evaluate MSPS on a testbed of 12 optimisation benchmark problems, in comparison with well-known optimisers, such as particle swarm optimiser, simulated annealing and differential evolution, showing that it can also be explored in other applications.
dc.description5
dc.description2
dc.description138
dc.description156
dc.descriptionFAPESP [2007/52015-0, 2010/00994-8, 2010/05647-4, 2013/11359-0]
dc.descriptionCNPq [302970/2014-2, 477662/2013-7, 304352/2012-8, 479070/2013-0]
dc.descriptionCAPES
dc.descriptionMicrosoft
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageEnglish
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.relationComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
dc.rightsfechado
dc.sourceWOS
dc.subjectMedical Image Registration
dc.subjectOptimisation Methods
dc.subjectBiomedical Image Processing
dc.subjectWatershed Transform
dc.subjectMultiscale Parameter Search
dc.subjectGlobal Optimisers
dc.titleMedical Image Registration Based On Watershed Transform From Greyscale Marker And Multi-scale Parameter Search
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución