dc.creatorHosseini
dc.creatorShahram; Deville
dc.creatorYannick; Duarte
dc.creatorLeonardo T.; Selloum
dc.creatorAhmed
dc.date2016
dc.date2017-11-13T13:44:44Z
dc.date2017-11-13T13:44:44Z
dc.date.accessioned2018-03-29T05:59:24Z
dc.date.available2018-03-29T05:59:24Z
dc.identifier978-1-5090-0746-2
dc.identifier2016 Ieee 26th International Workshop On Machine Learning For Signal Processing (mlsp). Ieee, p. , 2016.
dc.identifier2161-0363
dc.identifierWOS:000392177200082
dc.identifierhttp://ieeexplore.ieee.org/document/7738890/
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328848
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1365873
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis paper proposes a new constrained method, based on non-negative matrix factorization, for blindly separating linear-quadratic (LQ) mixtures of mutually uncorrelated source signals when the sources and mixing parameters are all non-negative. The uncorrelatedness of the sources is used as a regularization term in the cost function. The main advantage of exploiting uncorrelatedness in this manner is that the inversion of the mixing model, which is a difficult task in the case of determined LQ mixtures, is not required, contrary to the classical LQ methods based on independent component analysis. Experimental results using artificial data and real-world chemical data confirm the effectiveness of our method.
dc.descriptionNational Council for Scientific
dc.descriptionTechnological Development (CNPq, Brazil)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description26th IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
dc.descriptionSEP 13-16, 2016
dc.descriptionSalerno, ITALY
dc.description
dc.languageEnglish
dc.publisherIEEE
dc.publisherNew York
dc.relation2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)
dc.rightsfechado
dc.sourceWOS
dc.subjectBlind Source Separation
dc.subjectNon-negative Matrix Factorization (nmf)
dc.subjectLinear-quadratic Mixtures
dc.subjectUn-correlated Sources
dc.subjectRegularization
dc.titleExtending Nmf To Blindly Separate Linear-quadratic Mixtures Of Uncorrelated Sources
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución