dc.creatorda Costa
dc.creatorMichele N.; Lopes
dc.creatorRenato R.; Romano
dc.creatorJoao Marcos T.
dc.date2016
dc.date2017-11-13T13:44:30Z
dc.date2017-11-13T13:44:30Z
dc.date.accessioned2018-03-29T05:59:09Z
dc.date.available2018-03-29T05:59:09Z
dc.identifier978-0-9928-6265-7
dc.identifier2016 24th European Signal Processing Conference (eusipco). Ieee, p. 215 - 219, 2016.
dc.identifier2076-1465
dc.identifierWOS:000391891900043
dc.identifierhttp://ieeexplore.ieee.org/document/7760241/
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328784
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1365809
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThis paper presents an algorithm for signal subspace separation in the context of multidimensional data. The proposal is an extension of the randomized Singular Value Decomposition (SVD) for higher-order tensors. From a set derived from random sampling, we construct an orthogonal basis associated with the range of each mode-space of the input data tensor. Multilinear projection of the input data onto each mode-space then transforms the data to a low-dimensional representation. Finally, we compute the Higher-Order Singular Value Decomposition (HOSVD) of the reduced tensor. Furthermore, we propose an algorithm for computing the randomized HOSVD based on the row-extraction technique. The results reveal a relevant improvement from the standpoint of computational complexity.
dc.description215
dc.description219
dc.descriptionFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil [2014/23936-4]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description24th European Signal Processing Conference (EUSIPCO)
dc.descriptionAUG 28-SEP 02, 2016
dc.descriptionBudapest, HUNGARY
dc.description
dc.languageEnglish
dc.publisherIEEE
dc.publisherNew York
dc.relation2016 24th European Signal Processing Conference (EUSIPCO)
dc.rightsfechado
dc.sourceWOS
dc.subjectHigher-order Singular Value Decomposition
dc.subjectRandomized Algorithm
dc.subjectSignal Subspace Method
dc.subjectTensor Decomposition
dc.subjectDimension Reduction
dc.subjectRow-extraction Technique
dc.titleRandomized Methods For Higher-order Subspace Separation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución