Artículos de revistas
Classification Of Individual Cotton Seeds With Respect To Variety Using Near-infrared Hyperspectral Imaging
Registro en:
Analytical Methods. Royal Soc Chemistry, v. 8, p. 8498 - 8505, 2016.
1759-9660
1759-9679
WOS:000393101400014
10.1039/c6ay02896a
Autor
Carreiro Soares
Sofacles Figueredo; Medeiros
Everaldo Paulo; Pasquini
Celio; Morello
Camilo de Lelis; Harrop Galvao
Roberto Kawakami; Ugulino Araujo
Mario Cesar
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) This paper proposes the use of Near Infrared Hyperspectral Imaging (NIR-HSI) as a new strategy for fast and non-destructive classification of cotton seeds with respect to variety. A total of 807 seeds of four different cotton varieties are employed in this study. For classification purposes, each seed is represented by an average spectrum obtained by coaveraging the pixel spectra of the NIR-HSI image. Conventional NIR and VIS-NIR spectra are also employed for comparison. By using Partial-Least-Squares Discriminant Analysis (PLS-DA), correct classification rates of 98.0%, 89.7% and 91.7% were achieved in the NIR-HSI, conventional NIR and conventional VIS-NIR datasets. The superiority of the NIR-HSI system can be ascribed to a more comprehensive scan of the seed area, as compared to the conventional VIS-NIR spectrometer. 8 48 8498 8505 CNPq [475204/2004-2] INCTAA (CNPq) [573894/2008-6] INCTAA (FAPESP) [2008/57808-1] Embrapa [03.15.00.051.00.00] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)