dc.creator | Baptistelli | |
dc.creator | Patricia H.; Manoel | |
dc.creator | Miriam; Zeli | |
dc.creator | Iris O. | |
dc.date | 2016 | |
dc.date | set | |
dc.date | 2017-11-13T13:23:49Z | |
dc.date | 2017-11-13T13:23:49Z | |
dc.date.accessioned | 2018-03-29T05:56:24Z | |
dc.date.available | 2018-03-29T05:56:24Z | |
dc.identifier | Bulletin Of The Brazilian Mathematical Society. Springer Heidelberg, v. 47, p. 935 - 954, 2016. | |
dc.identifier | 1678-7544 | |
dc.identifier | 1678-7714 | |
dc.identifier | WOS:000384449000009 | |
dc.identifier | 10.1007/s00574-016-0197-z | |
dc.identifier | https://link.springer.com/article/10.1007%2Fs00574-016-0112-7 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/328173 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1365198 | |
dc.description | We give a method to obtain formal normal forms of reversible equivariant vector fields. The procedurewe present is based on the classical method of normal forms combined with tools from invariant theory. Normal forms of two classes of resonant cases are presented, both with linearization having a 2-dimensional nilpotent part and a semisimple part with purely imaginary eigenvalues. | |
dc.description | 47 | |
dc.description | 3 | |
dc.description | 935 | |
dc.description | 954 | |
dc.language | English | |
dc.publisher | Springer Heidelberg | |
dc.publisher | Heidelberg | |
dc.relation | Bulletin of the Brazilian Mathematical Society | |
dc.rights | fechado | |
dc.source | WOS | |
dc.subject | Normal Form | |
dc.subject | Reversibility | |
dc.subject | Symmetry | |
dc.subject | Homological Operator | |
dc.title | Normal Form Theory For Reversible Equivariant Vector Fields | |
dc.type | Artículos de revistas | |