dc.creatorAgra
dc.creatorAgostinho; Doostmohammadi
dc.creatorMandi; de Souza
dc.creatorCid C.
dc.date2016
dc.dateagos
dc.date2017-11-13T13:23:04Z
dc.date2017-11-13T13:23:04Z
dc.date.accessioned2018-03-29T05:55:46Z
dc.date.available2018-03-29T05:55:46Z
dc.identifierDiscrete Optimization. Elsevier Science Bv, v. 21, p. 42 - 70, 2016.
dc.identifier1572-5286
dc.identifier1873-636X
dc.identifierWOS:000381955200004
dc.identifier10.1016/j.disopt.2016.05.005
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1572528616300378
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328025
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1365050
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this paper a mixed integer set resulting from the intersection of a single constrained mixed 0-1 set with the vertex packing set is investigated. This set arises as a subproblem of more general mixed integer problems such as inventory routing and facility location problems. Families of strong valid inequalities that take into account the structure of the simple mixed integer set and that of the vertex packing set simultaneously are introduced. In particular, the well-known mixed integer rounding inequality is generalized to the case where incompatibilities between binary variables are present. Exact and heuristic algorithms are designed to solve the separation problems associated to the proposed valid inequalities. Preliminary computational experiments show that these inequalities can be useful to reduce the integrality gaps and to solve integer programming problems. (C) 2016 Elsevier B.V. All rights reserved.
dc.description21
dc.description42
dc.description70
dc.descriptionCAPES/FCT from the Brazilian Ministry of Education
dc.descriptionPortuguese Foundation for Science and Technology (FCT)
dc.descriptionFCT [EXPL/MAT-NAN/1761/2013, FCOMP-01-0124-FEDER-041898, UID/MAT/04106/2013]
dc.descriptionCNPq from the Brazilian Ministry of Science, Technology and Innovation [304727/2014-8, 477692/2012-5]
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherElsevier Science BV
dc.publisherAmsterdam
dc.relationDiscrete Optimization
dc.rightsfechado
dc.sourceWOS
dc.subjectMixed Integer Programming
dc.subjectValid Inequality
dc.subjectSeparation
dc.subjectVertex Packing Set
dc.subjectConflict Graph
dc.subjectIndependent Set
dc.titleValid Inequalities For A Single Constrained 0-1 Mip Set Intersected With A Conflict Graph
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución