dc.creatorFerreira
dc.creatorClecio S.; Lachos
dc.creatorVictor H.
dc.date2016
dc.datedez
dc.date2017-11-13T13:23:04Z
dc.date2017-11-13T13:23:04Z
dc.date.accessioned2018-03-29T05:55:45Z
dc.date.available2018-03-29T05:55:45Z
dc.identifierStatiscal Methodology. Elsevier Science Bv, v. 33, p. 131 - 146, 2016.
dc.identifier1572-3127
dc.identifier1878-0954
dc.identifierWOS:000390967700009
dc.identifier10.1016/j.stamet.2016.08.004
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1572312716300260
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328024
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1365049
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionNormal nonlinear regression models are applied in some areas of the sciences and engineering to explain or describe the phenomena under study. However, it is well known that several phenomena are not always represented by the normal model due to lack of symmetry or the presence of heavy- and light-tailed distributions related to the normal law in the data. This paper proposes an extension of nonlinear regression models using the skew-scale mixtures of normal (SSMN) distributions proposed by Ferreira et al. (2011). This class of models provides a useful generalization of the symmetrical nonlinear regression models since the random term distributions cover both asymmetric and heavy-tailed distributions, such as the skew-t-normal, skew-slash and skew-contaminated normal, among others. An expectation-maximization (EM) algorithm for maximum likelihood (ML) estimates is presented and the observed information matrix is derived analytically. Some simulation studies are presented to examine the performance of the proposed methods, with relation to robustness and asymptotic properties of the ML estimates. Finally, an illustration of the method is presented considering a dataset previously analyzed under normal and skew normal (SN) nonlinear regression models. The main conclusion is that the ML estimates from the heavy tails SSMN nonlinear models are more robust against outlying observations compared to the corresponding SN estimates. (C) 2016 Elsevier B.V. All rights reserved.
dc.description33
dc.description131
dc.description146
dc.descriptionFAPEMIG (Minas Gerais State Research Support Foundation) [CEX APQ 01845/14]
dc.descriptionCNPq-Brazil [305054/2011-2]
dc.descriptionFAPESP-Brazil [2014/02938-9]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherElsevier Science BV
dc.publisherAmsterdam
dc.relationStatiscal Methodology
dc.rightsfechado
dc.sourceWOS
dc.subjectEm Algorithm
dc.subjectNonlinear Regression Models
dc.subjectSkew-normal Distribution
dc.subjectSkew Scale Mixtures Of Normal Distributions
dc.titleNonlinear Regression Models Under Skew Scale Mixtures Of Normal Distributions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución