dc.creatorPereira
dc.creatorCaroline S.; Silveira
dc.creatorRodrigo L.; Dupree
dc.creatorPaul; Skaf
dc.creatorMunir S.
dc.date2017
dc.dateabr
dc.date2017-11-13T13:22:18Z
dc.date2017-11-13T13:22:18Z
dc.date.accessioned2018-03-29T05:55:05Z
dc.date.available2018-03-29T05:55:05Z
dc.identifierBiomacromolecules. Amer Chemical Soc, v. 18, p. 1311 - 1321, 2017.
dc.identifier1525-7797
dc.identifier1526-4602
dc.identifierWOS:000399061100026
dc.identifier10.1021/acs.biomac.7b00067
dc.identifierhttp://pubs-acs-org.ez88.periodicos.capes.gov.br/doi/abs/10.1021/acs.biomac.7b00067
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/327859
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364884
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionLignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that alpha-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.
dc.description18
dc.description4
dc.description1311
dc.description1321
dc.descriptionSao Paulo Research Foundation [2013/08293-7, 2014/10448-1, 2015/25031-1]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherAmer Chemical Soc
dc.publisherWashington
dc.relationBiomacromolecules
dc.rightsfechado
dc.sourceWOS
dc.titleEffects Of Xylan Side-chain Substitutions On Xylan-cellulose Interactions And Implications For Thermal Pretreatment Of Cellulosic Biomass
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución