dc.creatorFolego
dc.creatorGuilherme; Gomes
dc.creatorOtavio; Rocha
dc.creatorAnderson
dc.date2016
dc.date2017-11-13T13:22:15Z
dc.date2017-11-13T13:22:15Z
dc.date.accessioned2018-03-29T05:55:03Z
dc.date.available2018-03-29T05:55:03Z
dc.identifier978-1-4673-9961-6
dc.identifier2016 Ieee International Conference On Image Processing (icip). Ieee, p. 141 - 145, 2016.
dc.identifier1522-4880
dc.identifierWOS:000390782000029
dc.identifierhttp://ieeexplore.ieee.org/document/7532335/
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/327848
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364873
dc.descriptionCurators, art historians, and connoisseurs are often interested in determining the authorship of paintings. Machine learning and image processing techniques can assist in this task by providing non-invasive, automatic, and objective methods. In this work, we study the automatic identification of Vincent. van Gogh's paintings using a Convolutional Neural Network that extracts discriminative visual patterns of a painter directly from images, and a machine learning classifier allied with a fusion method in the final decision process. We divide each painting into non-overlapping patches, classify them individually, and then aggregate the outcomes for the final response. We find out that using the patch with highest confidence score leads to the hest result, outperforming the traditional voting scheme. We also contribute with a new and public dataset for van Gogh painting identification.
dc.description141
dc.description145
dc.description23rd IEEE International Conference on Image Processing (ICIP)
dc.descriptionSep 25-28, 2016
dc.descriptionPhoenix, AZ
dc.description
dc.languageEnglish
dc.publisherIEEE
dc.publisherNew York
dc.relation2016 IEEE International Conference on Image Processing (ICIP)
dc.rightsfechado
dc.sourceWOS
dc.subjectPainter Attribution
dc.subjectCnn-based Authorship Attribution
dc.subjectData-driven Painting Characterization
dc.titleFrom Impressionism To Expressionism: Automatically Identifying Van Gogh's Paintings
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución