dc.creatorBennet
dc.creatorMatthew; Jenkins
dc.creatorRollo
dc.date2017
dc.datefev
dc.date2017-11-13T13:16:26Z
dc.date2017-11-13T13:16:26Z
dc.date.accessioned2018-03-29T05:53:45Z
dc.date.available2018-03-29T05:53:45Z
dc.identifierAlgebras And Representation Theory. Springer, v. 20, p. 197 - 208, 2017.
dc.identifier1386-923X
dc.identifier1572-9079
dc.identifierWOS:000394266700008
dc.identifier10.1007/s10468-016-9637-0
dc.identifierhttps://link.springer.com/article/10.1007/s10468-016-9637-0
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/327548
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364573
dc.descriptionGiven a finite-dimensional module V for a finite-dimensional, complex semi-simple Lie algebra , and a positive integer m, we construct a family of graded modules for the current algebra indexed by simple C -modules. These modules are free of finite rank for the ring of symmetric polynomials and so can be localized to give finite-dimensional graded -modules. We determine the graded characters of these modules and show that these graded characters admit a curious duality.
dc.description20
dc.description1
dc.description197
dc.description208
dc.languageEnglish
dc.publisherSpringer
dc.publisherDordrecht
dc.relationAlgebras and Representation Theory
dc.rightsfechado
dc.sourceWOS
dc.subjectCurrent Algebra
dc.subjectLie Algebra
dc.subjectTilting Module
dc.subjectSymmetric Group
dc.subjectGraded Module
dc.titleOn Some Families Of Modules For The Current Algebra
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución