dc.creator | Bennet | |
dc.creator | Matthew; Jenkins | |
dc.creator | Rollo | |
dc.date | 2017 | |
dc.date | fev | |
dc.date | 2017-11-13T13:16:26Z | |
dc.date | 2017-11-13T13:16:26Z | |
dc.date.accessioned | 2018-03-29T05:53:45Z | |
dc.date.available | 2018-03-29T05:53:45Z | |
dc.identifier | Algebras And Representation Theory. Springer, v. 20, p. 197 - 208, 2017. | |
dc.identifier | 1386-923X | |
dc.identifier | 1572-9079 | |
dc.identifier | WOS:000394266700008 | |
dc.identifier | 10.1007/s10468-016-9637-0 | |
dc.identifier | https://link.springer.com/article/10.1007/s10468-016-9637-0 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/327548 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1364573 | |
dc.description | Given a finite-dimensional module V for a finite-dimensional, complex semi-simple Lie algebra , and a positive integer m, we construct a family of graded modules for the current algebra indexed by simple C -modules. These modules are free of finite rank for the ring of symmetric polynomials and so can be localized to give finite-dimensional graded -modules. We determine the graded characters of these modules and show that these graded characters admit a curious duality. | |
dc.description | 20 | |
dc.description | 1 | |
dc.description | 197 | |
dc.description | 208 | |
dc.language | English | |
dc.publisher | Springer | |
dc.publisher | Dordrecht | |
dc.relation | Algebras and Representation Theory | |
dc.rights | fechado | |
dc.source | WOS | |
dc.subject | Current Algebra | |
dc.subject | Lie Algebra | |
dc.subject | Tilting Module | |
dc.subject | Symmetric Group | |
dc.subject | Graded Module | |
dc.title | On Some Families Of Modules For The Current Algebra | |
dc.type | Artículos de revistas | |