dc.creatorAlcantara
dc.creatorK. F.; Rocha
dc.creatorA. B.; Gomes
dc.creatorA. H. A.; Wolff
dc.creatorW.; Sigaud
dc.creatorL.; Santos
dc.creatorA. C. F.
dc.date2016
dc.dateset
dc.date2017-11-13T13:15:08Z
dc.date2017-11-13T13:15:08Z
dc.date.accessioned2018-03-29T05:52:39Z
dc.date.available2018-03-29T05:52:39Z
dc.identifierJournal Of Physical Chemistry A. Amer Chemical Soc, v. 120, p. 6728 - 6737, 2016.
dc.identifier1089-5639
dc.identifierWOS:000382596800007
dc.identifier10.1021/acs.jpca.6b05368
dc.identifierhttp://pubs-acs-org.ez88.periodicos.capes.gov.br/doi/abs/10.1021/acs.jpca.6b05368
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/327284
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364309
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H+ fragments are observed-with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p -> 10a(1)*) and Cl (2p -> 4b(1)*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin orbit coupling matrix elements, which after diagonalization result in a spin orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup.
dc.description120
dc.description34
dc.description6728
dc.description6737
dc.descriptionCNPq
dc.descriptionFAPERJ (Brazil)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherAmer Chemical Soc
dc.publisherWashington
dc.relationJournal of Physical Chemistry A
dc.rightsfechado
dc.sourceWOS
dc.subjectCh2cl2
dc.subjectDichloromethane
dc.subjectIonization
dc.subjectCurves
dc.subjectStates
dc.subjectIons
dc.subjectAir
dc.titleKinetic Energy Release Of The Singly And Doubly Charged Methylene Chloride Molecule: The Role Of Fast Dissociation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución