Artículos de revistas
Revisiting The Kronecker Array Transform
Registro en:
Ieee Signal Processing Letters. Ieee-inst Electrical Electronics Engineers Inc, v. 24, p. 525 - 529, 2017.
1070-9908
1558-2361
WOS:000398855800001
10.1109/LSP.2017.2674969
Autor
Masiero
Bruno; Nascimento
Vitor H.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. 24 5 525 529 Sao Paulo Research Foundation [14/06066-6, 14/04256-2] Brazilian Council for Scientific and Technological Development [306268/2014-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)