dc.creatorSilva
dc.creatorBismarck L.; Garcia
dc.creatorAmauri; Spinelli
dc.creatorJose E.
dc.date2016
dc.dateabr
dc.date2017-11-13T13:14:00Z
dc.date2017-11-13T13:14:00Z
dc.date.accessioned2018-03-29T05:51:51Z
dc.date.available2018-03-29T05:51:51Z
dc.identifierMaterials Characterization. Elsevier Science Inc, v. 114, p. 30 - 42, 2016.
dc.identifier1044-5803
dc.identifier1873-4189
dc.identifierWOS:000374602300004
dc.identifier10.1016/j.matchar.2016.02.002
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S1044580316300274?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/327094
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364119
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionLow temperature soldering technology encompasses Sn-Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 degrees C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi-Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn-Bi-(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn-Bi-(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the micro structural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn-Bi-Cu and Sn-Bi-Ag alloys examined. (C) 2016 Elsevier Inc. All rights reserved.
dc.description114
dc.description30
dc.description42
dc.descriptionFAPESP (Sao Paulo Research Foundation, Brazil) [2013/08259-3, 2013/13030-5]
dc.descriptionCNPq
dc.descriptionCAPES-COFECUB [857/15]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageEnglish
dc.publisherElsevier Science Inc
dc.publisherNew York
dc.relationMaterials Characterization
dc.rightsfechado
dc.sourceWOS
dc.subjectSn-bi-cu Alloys
dc.subjectSn-bi-ag Alloys
dc.subjectSolder Alloys
dc.subjectSolidification
dc.subjectCooling Rate
dc.subjectMicrostructure
dc.titleCooling Thermal Parameters And Microstructure Features Of Directionally Solidified Ternary Sn-bi-(cu,ag) Solder Alloys
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución