dc.creatorKaras
dc.creatorElizabeth W.; Santos
dc.creatorSandra A.; Svaiter
dc.creatorBenar F.
dc.date2016
dc.datedez
dc.date2017-11-13T13:13:04Z
dc.date2017-11-13T13:13:04Z
dc.date.accessioned2018-03-29T05:51:08Z
dc.date.available2018-03-29T05:51:08Z
dc.identifierComputationall Optimization And Applications. Springer, v. 65, p. 723 - 751, 2016.
dc.identifier0926-6003
dc.identifier1573-2894
dc.identifierWOS:000387773500007
dc.identifier10.1007/s10589-016-9845-x
dc.identifierhttps://link-springer-com.ez88.periodicos.capes.gov.br/article/10.1007%2Fs10589-016-9845-x
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326990
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1364015
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThis paper presents a class of Levenberg-Marquardt methods for solving the nonlinear least-squares problem. Explicit algebraic rules for computing the regularization parameter are devised. In addition, convergence properties of this class of methods are analyzed. We prove that all accumulation points of the generated sequence are stationary. Moreover, q-quadratic convergence for the zero-residual problem is obtained under an error bound condition. Illustrative numerical experiments with encouraging results are presented.
dc.description65
dc.description3
dc.description723
dc.description751
dc.descriptionCNPq [477611/2013-3, 308957/2014-8, 304032/2010-7, 302962/2011-5, 474944/2010-7]
dc.descriptionFAPESP [2013/05475-7, 2013/07375-0]
dc.descriptionPRONEX Optimization
dc.descriptionFAPERJ [E-26/102.940/2011]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherSpringer
dc.publisherNew York
dc.relationComputationalL Optimization and Applications
dc.rightsfechado
dc.sourceWOS
dc.subjectNonlinear Least-squares Problems
dc.subjectLevenberg-marquardt Method
dc.subjectRegularization
dc.subjectGlobal Convergence
dc.subjectLocal Convergence
dc.subjectComputational Results
dc.titleAlgebraic Rules For Computing The Regularization Parameter Of The Levenberg-marquardt Method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución