dc.creatorAmorim
dc.creatorPaulo; Moraes
dc.creatorThiago; Fazanaro
dc.creatorDalton; Silva
dc.creatorJorge; Pedrini
dc.creatorHelio
dc.date2017
dc.datejan
dc.date2017-11-13T13:12:14Z
dc.date2017-11-13T13:12:14Z
dc.date.accessioned2018-03-29T05:50:30Z
dc.date.available2018-03-29T05:50:30Z
dc.identifierExpert Systems With Applications. Pergamon-elsevier Science Ltd , v. 67, p. 140 - 147, 2017.
dc.identifier0957-4174
dc.identifier1873-6793
dc.identifierWOS:000386861600013
dc.identifier10.1016/j.eswa.2016.09.037
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0957417416305218?via%3Dihub
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326837
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363862
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionEpilepsy is a disorder that affects approximately 50 million people of all ages, according to World Health Organization (2016), which makes it one of the most common neurological diseases worldwide. Electroencephalogram (EEG) signals have been widely used to detect epilepsy and other brain abnormalities. In this work, we propose and evaluate a novel methodology based on shearlet and contourlet transforms to decompose the EEG signals into frequency bands. A set of features are extracted from these time frequency coefficients and used as input to different classifiers. Experiments are conducted on a public data set to demonstrate the effectiveness of the proposed classification method. The developed system can help neurophysiologists identify EEG patterns in epilepsy diagnostic tasks. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description67
dc.description140
dc.description147
dc.descriptionFAPESP - Sao Paulo Research Foundation [2011/22749-8]
dc.descriptionCNPq [307113/2012-4]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherPergamon-Elsevier Science LTD
dc.publisherOxford
dc.relationExpert Systems with Applications
dc.rightsfechado
dc.sourceWOS
dc.subjectEpilepsy
dc.subjectElectroencephalogram Signals
dc.subjectShearlets
dc.subjectContourlets
dc.titleElectroencephalogram Signal Classification Based On Shearlet And Contourlet Transforms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución