Artículos de revistas
Generalized Moment Estimation Of Stochastic Differential Equations
Registro en:
Computational Statistics. Springer Heidelberg, v. 31, p. 1169 - 1202, 2016.
0943-4062
1613-9658
WOS:000379341700016
10.1007/s00180-015-0598-2
Autor
Laurini
Marcio Poletti; Hotta
Luiz Koodi
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We study the semiparametric estimation of stochastic differential equations employing methods based on moment conditions, comparing the finite sample and robustness properties of generalized method of moments, empirical likelihood and minimum contrast methods using unconditional and conditional formulations of moment conditions. The results obtained indicate that the estimators proposed, particularly, the estimators based on exponential tilting, obtain better results than those of the generalized methods of moments normally used to estimate stochastic differential equations. This conclusion is mainly derived from the robustness properties of this method in the presence of problems of incorrect specification. 31 3 1169 1202 FAPESP CNPq Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)