dc.creatorCoimbra
dc.creatorTiago A.; Faccipieri
dc.creatorJorge H.; Rueda
dc.creatorDany S.; Tygel
dc.creatorMartin
dc.date2016
dc.datejul
dc.date2017-11-13T11:34:19Z
dc.date2017-11-13T11:34:19Z
dc.date.accessioned2018-03-29T05:48:36Z
dc.date.available2018-03-29T05:48:36Z
dc.identifierStudia Geophysica Et Geodaetica. Springer, v. 60, p. 500 - 530, 2016.
dc.identifier0039-3169
dc.identifier1573-1626
dc.identifierWOS:000382365100009
dc.identifier10.1007/s11200-015-0392-1
dc.identifierhttps://link.springer.com/article/10.1007/s11200-015-0392-1
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326404
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363410
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionSince the early days of seismic processing, time migration has proven to be a valuable tool for a number of imaging purposes. Main motivations for its widespread use include robustness with respect to velocity errors, as well as fast turnaround and low computation costs. In areas of complex geology, in which it has well-known limitations, time migration can still be of value by providing first images and also attributes, which can be of much help in further, more comprehensive depth migration. Time migration is a very close process to common-midpoint (CMP) stacking and, more recently, to zero-offset commonreflection- surface (CRS) stacking. In fact, Kirchhoff time migration operators can be readily formulated in terms of CRS parameters. In the nineties, several studies have shown advantages in the use of common-reflection-point (CRP) traveltimes to replace conventional CMP traveltimes for a number of stacking and migration purposes. In this paper, we follow that trend and introduce a Kirchhoff-type prestack time migration and velocity analysis algorithm, referred to as CRP time migration. The algorithm is based on a CRP operator together with optimal apertures, both computed with the help of CRS parameters. A field-data example indicates the potential of the proposed technique.
dc.description60
dc.description3
dc.description500
dc.description530
dc.descriptionNational Council for Scientific and Technological Development (CNPq-Brazil)
dc.descriptionNational Institute of Science and Technology of Petroleum Geophysics (INCT-GP-Brazil)
dc.descriptionCenter for Computational Engineering and Sciences (Fapesp/Cepid) [2013/08293-7-Brazil]
dc.descriptionWave Inversion Technology (WIT) Consortium
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherSpringer
dc.publisherNew York
dc.relationStudia Geophysica et Geodaetica
dc.rightsfechado
dc.sourceWOS
dc.subjectCommon-reflection Point (crp)
dc.subjectCommon-reflection Surface (crs)
dc.subjectTime Migration
dc.titleCommon-reflection-point Time Migration
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución