Artículos de revistas
Gk-dimension Of 2 X 2 Generic Lie Matrices
Registro en:
Publicationes Mathematicae-debrecen. Kossuth Lajos Tudomanyegyetem, v. 89, p. 125 - 135, 2016.
0033-3883
WOS:000385027800009
10.5486/PMD.2016.7400
Autor
Drensky
Vesselin; Koshlukov
Plamen; Machado
Gustavo Grings
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Recently Machado and Koshlukov have computed the Gelfand Kirillov dimension of the relatively free algebra F-m = F-m(var (sl(2)(K))) of rank m in the variety of algebras generated by the three-dimensional simple Lie algebra sl2 (K) over an infinite field K of characteristic different from 2. They have shown that GKdim(F-m) = 3(m-1). The algebra F-m is isomorphic to the Lie algebra generated by m generic 2 x 2 matrices. Now we give a new proof for GKdim(F-m) using classical results of Procesi and Razmyslov combined with the observation that the commutator ideal of F-m is a module of the center of the associative algebra generated by m generic traceless 2 x 2 matrices. 89 125 135 Computational and Combinatorial Methods in Algebra and Applications of the Bulgarian National Science Fund [I02/18] FAPESP [2014/08608-0] CNPq [304632/2015-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)