dc.creatorMaciel
dc.creatorMaria C.; Santos
dc.creatorSandra A.; Sottosanto
dc.creatorGraciela N.
dc.date2016
dc.datedez
dc.date2017-11-13T11:33:44Z
dc.date2017-11-13T11:33:44Z
dc.date.accessioned2018-03-29T05:48:05Z
dc.date.available2018-03-29T05:48:05Z
dc.identifierOpsearch. Springer India, v. 53, p. 917 - 933, 2016.
dc.identifier0030-3887
dc.identifierWOS:000388465000011
dc.identifier10.1007/s12597-016-0253-x
dc.identifierhttps://link-springer-com.ez88.periodicos.capes.gov.br/article/10.1007/s12597-016-0253-x
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326317
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363323
dc.descriptionIn this contribution, the relationship between saddle points of Lagrangian functions associated with the inequality constrained multiobjective optimization problem and Fritz John critical points are presented under generalized notions of convexity. Assuming invexity and an extended Slater-type condition upon the multiobjective problem, a regular solution to the Fritz-John system is obtained that encompasses all the objective functions. Also, a new class of generalized convex problems is defined, and its connections with other existing classes are established.
dc.description53
dc.description4
dc.description917
dc.description933
dc.languageEnglish
dc.publisherSpringer India
dc.publisherNew Delhi
dc.relationOpsearch
dc.rightsfechado
dc.sourceWOS
dc.subjectMultiobjective Optimization
dc.subjectFritz John Points
dc.subjectSaddle Points
dc.titleOn The Fritz John Saddle Point Problem For Differentiable Multiobjective Optimization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución