dc.creatorBleak
dc.creatorCollin; Matucci
dc.creatorFrancesco; Neunhoffer
dc.creatorMax
dc.date2016
dc.dateout
dc.date2017-11-13T11:33:24Z
dc.date2017-11-13T11:33:24Z
dc.date.accessioned2018-03-29T05:47:52Z
dc.date.available2018-03-29T05:47:52Z
dc.identifierJournal Of The London Mathematical Society-second Series. Oxford Univ Press , v. 94, p. 583 - 597, 2016.
dc.identifier0024-6107
dc.identifier1469-7750
dc.identifierWOS:000386947900014
dc.identifier10.1112/jlms/jdw044
dc.identifierhttps://academic.oup.com/jlms/article/94/2/583/2218859/Embeddings-into-Thompson-s-group-V-and-coCF-groups
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326261
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363267
dc.descriptionIt is shown in Lehnert and Schweitzer ('The co-word problem for the Higman-Thompson group is context-free', Bull. London Math. Soc. 39 (2007) 235-241) that R. Thompson's group V is a co-context-free (coCF) group, thus implying that all of its finitely generated subgroups are also coCF groups. Also, Lehnert shows in his thesis that V embeds inside the coCF group QAut(T-2,T- c), which is a group of particular bijections on the vertices of an infinite binary 2-edge-coloured tree, and he conjectures that QAut(T-2,T- c) is a universal coCF group. We show that QAut(T-2,T- c) embeds into V, and thus obtain a new form for Lehnert's conjecture. Following up on these ideas, we begin work to build a representation theory into R. Thompson's group V. In particular, we classify precisely which Baumslag-Solitar groups embed into V.
dc.description94
dc.description583
dc.description597
dc.descriptionFondation Mathematique Jacques Hadamard [ANR-10-CAMP-0151-02 FMJH]
dc.languageEnglish
dc.publisherOxford Univ Press
dc.publisherOxford
dc.relationJournal of the London Mathematical Society-Second Series
dc.rightsfechado
dc.sourceWOS
dc.titleEmbeddings Into Thompson's Group V And Cocf Groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución