dc.creatorSchneider
dc.creatorDavid M.; Martins
dc.creatorAyana B.; de Aguiar
dc.creatorMarcus A. M.
dc.date2016
dc.dateagos
dc.date2017-11-13T11:33:01Z
dc.date2017-11-13T11:33:01Z
dc.date.accessioned2018-03-29T05:47:33Z
dc.date.available2018-03-29T05:47:33Z
dc.identifierJournal Of Theoretical Biology. Academic Press Ltd- Elsevier Science Ltd, v. 402, p. 9 - 17, 2016.
dc.identifier0022-5193
dc.identifier1095-8541
dc.identifierWOS:000377623700002
dc.identifier10.1016/j.jtbi.2016.04.024
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0022519316300522
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326185
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363191
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populatiorls the mutation threshold is mu(C) = 1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining k(c) as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that k(c) grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description402
dc.description9
dc.description17
dc.descriptionSao Paulo Research Foundation (FAPESP) [2014/04036-2, 2014/10470-7]
dc.descriptionCNPq
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherAcademic Press Ltd- Elsevier Science Ltd
dc.publisherLondon
dc.relationJournal of Theoretical Biology
dc.rightsfechado
dc.sourceWOS
dc.subjectAllele Distribution
dc.subjectMutation Threshold
dc.subjectNetworks
dc.subjectMoran Model
dc.titleThe Mutation-drift Balance In Spatially Structured Populations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución