Artículos de revistas
Group Gradings On The Lie Algebra Of Upper Triangular Matrices
Registro en:
Journal Of Algebra. Academic Press Inc Elsevier Science, v. 477, p. 294 - 311, 2017.
0021-8693
1090-266X
WOS:000396380500014
10.1016/j.jalgebra.2016.12.033
Autor
Koshlukov
Plamen; Yukihide
Felipe
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) The algebras UTn, of the n x n upper triangular matrices over a field K are of significant importance in the theory of algebras with polynomial identities. Group gradings on algebras appear in various areas and provide an indispensable tool in the study of the algebraic and combinatorial properties of the algebras in question. We classify the group gradings on the Lie algebra UTn(-).It was proved by Valenti and Zaicev in 2007 that every group grading on the associative algebra UT,, is isomorphic to an elementary grading. The elementary gradings on UTn(-) are also well understood, see [6]. It follows from our results that there are nonelementary gradings on UTn(-)). Thus the gradings on the Lie algebra UT4) are much more intricate than those in the associative case. (C) 2017 Elsevier Inc. All rights reserved. 477 294 311 FAPESP [2014/09310-5, 2013/22802-1] CNPq [304632/2015-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)