dc.creatorEnrique Gutierrez-Carvajal
dc.creatorRicardo; de Melo
dc.creatorLeonimer Flavio; Rosario
dc.creatorJoao Mauricio; Machado
dc.creatorJ. A. Tenreiro
dc.date2016
dc.datejul
dc.date2017-11-13T11:32:00Z
dc.date2017-11-13T11:32:00Z
dc.date.accessioned2018-03-29T05:46:45Z
dc.date.available2018-03-29T05:46:45Z
dc.identifierInternational Journal Of Systems Science. Taylor & Francis Ltd, v. 47, p. 2169 - 2177, 2016.
dc.identifier0020-7721
dc.identifier1464-5319
dc.identifierWOS:000372101500016
dc.identifier10.1080/00207721.2014.978833
dc.identifierhttp://www.tandfonline.com/doi/abs/10.1080/00207721.2014.978833
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/326000
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1363006
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWhile fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model's complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
dc.description47
dc.description9
dc.description2169
dc.description2177
dc.descriptionCampinas State University - UNICAMP (Brazil)
dc.descriptionPolytechnic Institute of Porto - ISEP (Portugal)
dc.descriptionNational Council for Scientific and Technological Development - CNPq (Brazil)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.relationInternational Journal of Systems Science
dc.rightsfechado
dc.sourceWOS
dc.subjectIntelligent Maintenance
dc.subjectIntelligent Diagnostics
dc.subjectApplication Of Fractional Calculus
dc.subjectIdentification Of Fractional Order Systems
dc.titleCondition-based Diagnosis Of Mechatronic Systems Using A Fractional Calculus Approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución